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I provide an explanation of Birkhoff’s thoerem which exlains why ’mass’ in vacuum solutions to Einstein’s equations
must be static and stationary.

The constancy of mass (ṁ = 0) is a property of the
unique solution (Schwarzschild) to the spherically sym-
metric vacuum Einstein equations. For a symmetric
spacetime,

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + dΩ2, (1)

one of these equations yields

Gr̂t̂ ∝ λ̇, (2)

where dΩ2 = r2(dθ2 + sin2 θdφ2). Since the vacuum case
involves a null stress-energy tensor, equation (2) implies

λ̇ = 0 =⇒ λ(t) = const. (3)

This implies that Einstein’s equations may be solved
while neglecting the time-dependence of λ without loss
of generality. Further, the combination Gt̂t̂ + Gr̂r̂ = 0,
which can be used to solve for ν(r, t) in equation (1), re-
veals ν to be a function only of r and λ. Since λ does
not depend on t by equation (3), ν must be solely a func-
tion of r and not of t. Thus for a spherically-symmetric
spacetime such as (1), λ and ν are constant in time.

One can approach the same problem with a more gen-
eral, but still spherically-symmetric, spacetime

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + eκ(r,t)drdt+ dΩ2. (4)

In which case (2) takes the form

Gr̂t̂ ∝ κ(r, t)λ̇, (5)

where κ is an arbitrary function. Since the Gr̂t̂ equation
describes the time-evolution of the radial component, κ
and λ both parameterize the ‘mass’. In the null stress-
energy case, (5) requires that when κ(r, t) 6= 0, λ̇ = 0;
conversely, if λ̇ 6= 0, κ(r, t) must be 0. This is a physical
contradiction, because λ̇ and κ both parameterize ‘mass’.
Thus κ = λ̇ = 0. Therefore ‘mass’ must be static.

This phenomenon, which is proven to be true for any
spherically-symmetric spacetime, can be explained by
an assumption of the equations of curvature Rαβ , that
the acceleration of a separation vector Sα between two
nearby geodesics does not explicitly depend on time. The
effect of this assumption can be visualized either by con-
sidering two points on nearby geodesics which approach
a center of symmetry in vacuum space (Fig 1a), or by
considering two points on nearby geodesics on a sphere
(Fig. 1b).

Figure 1: (a) Two geodesics separated by a four-vector Sα.
(b) Two geodesics on the surface of a sphere separated by a
three-vector S.

As the points in Fig. 1a move in unison along their
respective geodesics toward the center of symmetry, the
vector Sα between them accelerates constantly. How-
ever, if the ‘mass’ were growing during this descent, then
the separation vector Sα would accelerate at a slower
rate. Equivalently, if the sphere in Fig. 1b were grow-
ing during the uniform motion of the points along their
geodesics, the three-vector S would accelerate slower
than if the sphere were static. There is a metaphor
for this postulate: if two ants bound to intersect were
walking along geodesics on the surface of a balloon, it
would take longer for them to intersect if the balloon
were inflating as they walked. This means that for a
spacetime metric to be a function of time, the distance
between geodesics must also be a function of time. This
last statement requires no assumption of symmetry.

I. Proof of Static Geodesics

I will now show that the vacuum equations of cur-
vature (Rαβ = 0) only consider geodesics with constant
separation, and thus can only predict spacetimes with
constant masses, regardless of symmetry. I will begin by
recalling the geodesic equation

d2xα

dτ2
= −Γαβγu

βuγ , (6)

where xα is a point on the fiducial geodesic, and uδ is the
coordinate velocity dxδ/dτ . Since neighboring geodesics
are considered to be very close, the geodesic equation for
the nearby geodesics located at xα+Sα, where Sα is the
separation vector, may be approximated to first-order
using a Taylor expansion around xα. This is

d2(xα + Sα)

dτ2
= −Γαβγu

βuγ −
∂Γαβγ
∂xε

uβuγSε − 2Γαβγu
β dS

γ

dτ
.

(7)
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Subtracting (7) from (6) reveals

d2Sα

dτ2
=
∂Γαβγ
∂xε

uβuγSε + 2Γαβγu
β dS

γ

dτ
. (8)

This is the equation for the proper time acceleration
of the separation vector between two nearby geodesics.
However, arriving at it required a fundamental assump-
tion: that the separation vector has no explicit time-
dependence, that ‘mass’ is static. For a time-dependent
Sα, the full first-order Taylor expansion is

d2(xα + Sα(t))

dτ2
= −Γαβγu

βuγ −
∂Γαβγ
∂xε

uβuγSε(t)

−2Γαβγu
β dS

γ(t)

dτ
−
dΓαβγ
dt

uβuγ∆t− 2Γαβγu
β du

γ

dt
∆t,

(9)

where ∆t = 0, restoring equation (7), only in the case
that Sα does not change with time. Note that ∆t must
be a small dt for the first order approximation to be
accurate. Subtracting (9) from (6) to obtain the new
proper time acceleration yields

d2Sα(t)

dτ2
=
∂Γαβγ
∂xε

uβuγSε(t) + 2Γαβγu
β dS

γ(t)

dτ

+
dΓαβγ
dt

uβuγdt+ 2Γαβγu
β du

γ

dt
dt.

(10)

The difference between this equation and (8) are the two
dt terms. These terms are not accounted for in (8) be-
cause S0 6= dt. This is the most important mathematical
statement of this paper: S0 = εt measures the infinitesi-
mal time separation between each spacetime coordinate
of the nearby geodesics, while dt measures the explicit
change in time. Because they are independent of each
other and not the same variable, (10) is necessary to
allow for the distance between geodesics to depend on
time explicitly, and consequently for mass to be time-
dependent.

To show how equation (10) changes the Einstein equa-
tions of curvature, I will recall that the acceleration of
the (time-independent) separation vector, taken with the
complete derivative∇u to account for changing basis vec-
tors, gives forth the Riemann tensor

(∇u∇uS)α = −RαβγδuβSγuδ. (11)

The covariant derivative ∇u of a vector is always the
change in the vector components throughout coordinate
space plus the change in the basis vectors throughout co-
ordinate space, all in the direction of the coordinate ve-
locity uδ. The expression for the second covariant deriva-
tive of the separation vector Sα is

(∇u∇uS)α =
d2Sα

dτ2
+
∂Γαβγ
∂xε

uεuβSγ + Γαβγ
duβ

dτ
Sγ

+ 2Γαβγu
β dS

γ

dτ
+ ΓαεσΓσβγu

εuβSγ .

(12)

To obtain (11), one must substitute (8) into (12). This
would show that

(∇u∇uS)α = −
(
∂Γαβδ
xγ
−
∂Γαβγ
xδ

+ ΓαγεΓ
ε
βδ − ΓαδεΓ

ε
βγ

)
uβSγuδ

≡ −RαβγδuβSγuδ.
(13)

However, if instead equation (10) were inserted into (12)
to account for time-dependent mass, the equations of cur-
vature would not simplify to the Riemann tensor of equa-
tion (13).

Before demonstrating this, I would like to resolve any
discomforts one may have with whether or not the same
covariant derivative used to calculate (12) may also be
used for time-dependent vectors. The equation for the
covariant derivative ∇u of a static vector vα

(∇uv)α = uβ∇βvα = uβ
(
∂vα

∂xβ
+ Γαβγv

γ

)
, (14)

is the same as for a time-dependent vector vα(t). The
justification for this is that the time-derivatives in equa-
tion (14) will measure the change in each component of
vα(t) and êβ(t) by the chain rule, i.e. for

∂vα(t)

x0
and Γαβ0 =

(
∂êβ(t)

∂x0

)α
. (15)

Thus the covariant derivative needs no alterations to
measure the correct change in time-dependent vectors.

Finally, the new equation for the acceleration of the
separation vector is

(∇u∇uS)α =−RαβγδuβSγuδ

+

(
∂Γαβγ
∂t

uβ + 2Γαβγ
∂uβ

∂t

)
dtuγ .

(16)

The terms in the parenthesis in (16) describe the change
in spacetime curvature over time, and suggest two things:
the rate at which basis vectors change throughout coordi-
nate space (i.e. Γαβγ) changes with time, and the proper

time velocity (i.e. uβ) of a point changes with time.
This is expected. The next step is to calculate the ob-
ject which is analogous to the Ricci curvature. Since Rαβ
is obtained with a sum taken over the components of the
separation vector Rγβγδ ≡ Rβδ, with the motivation that
these components describe geodesic deviation, the analo-
gous sum that must be taken to describe time-dependent
geodesic deviation is over time,

Cαγ =

∫ (
∂Γαβγ
∂t

uβ + 2Γαβγ
∂uβ

∂t

)
dt. (17)

This gives rise to a new requirement for vacuum equa-
tions of curvature, namely

Rαβ = 0 (18a)

Cαβ = 0. (18b)

These requirements imply that the vacuum case is sat-
isfied only when geodesics do not deviate in spacetime
(18a) and in explicit time (18b). Although obvious,
this fact is somewhat obscured by the popular discourse
on Birkhoff’s theorem; because the constancy of mass
has little to do with spherical symmetry. The unique
Schwarzschild solution is a result of spherical symmetry;
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the constant and stationary property of mass is a result
of the inability of the Riemann tensor to describe time-
dependent geodesics in the vacuum case. The Riemann
and Ricci tensors, considered alone, are static.

II. Proof of Static Field

It is important, and perhaps clarifying, to consider
the Newtonian analogy. I will begin with the force law

m
d2xi

dt2
= −δij ∂Φ(~x, t)

∂xj
. (19)

This is the Newtonian equation of motion for a particle
xi subject to a field Φ, where m can be set to 1 for
our purposes. By employing the full Taylor expansion
around the point (xi, t), then subtracting this from (19),
the equation for the acceleration of a small separation
vector Si between two nearby particles is

d2Si

dt2
= −δij

(
∂2Φ(~x, t)

∂xk∂xj
Sk +

∂2Φ(~x, t)

∂t∂xj
∆t

)
. (20)

This is almost the same as the traditional Newtonian
Deviation Equation

d2Si

dt2
= −δij ∂

2Φ(~x)

∂xk∂xj
Sk, (21)

except where the second term in equation (20) has been
added to account for the explicit time-dependence of the
separation between the paths of particles, caused by a
time-dependent field. (20) gives rise to an altered New-
tonian field equation

∇2Φ = δij
(
∂2Φ(~x, t)

∂xi∂xj
+
∂2Φ(~x, t)

∂t∂xj

)
= 4πGµ(~x, t), (22)

where the mass density µ must be time-dependent.

III. Discussion

It is important to notice that freely-falling particles
are not easily confined to their geodesics during the ex-
pansion of a spherical mass. That is to say, it would take
energy to keep free-falling points on the same geodesics
if the mass were changing with time. A thought experi-
ment which makes this extremely clear is to consider two
nearby particles which are so far from the mass that they
don’t seem to be falling at all. In this case, a rapidly-
changing mass would most certainly not increase the sep-
aration vector Sα between them. Instead, the particles
would energetically favor entering onto new geodesics.
Equivalently, but not as obviously, a free particle mov-
ing on a geodesic on the surface of a sphere is not eas-
ily confined to that geodesic during the sphere’s expan-
sion. This is evidence of the fact that the Hamiltonian is
not conserved for spacetime metrics with time-dependent
masses. Due to the conclusions of this paper, Birkhoff’s
theorem is most accurately stated as “the unique solu-
tion to a spherically-symmetric, vacuum spacetime is the
Schwarzschild solution.”
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